65 research outputs found

    A note on the depth-from-defocus mechanism of jumping spiders

    Get PDF
    Jumping spiders are capable of estimating the distance to their prey relying only on the information from one of their main eyes. Recently, it has been shown that jumping spiders perform this estimation based on image defocus cues. In order to gain insight into the mechanisms involved in this blur-to-distance mapping as performed by the spider and to judge whether inspirations can be drawn from spider vision for depth-from-defocus computer vision algorithms, we constructed a three-dimensional (3D) model of the anterior median eye of the Metaphidippus aeneolus, a well studied species of jumping spider. We were able to study images of the environment as the spider would see them and to measure the performances of a well known depth-from-defocus algorithm on this dataset. We found that the algorithm performs best when using images that are averaged over the considerable thickness of the spider's receptor layers, thus pointing towards a possible functional role of the receptor thickness for the spider's depth estimation capabilities

    Evaluation of textile substrates for dispensing synthetic attractants for malaria mosquitoes

    Get PDF
    Background: The full-scale impact of odour-baited technology on the surveillance, sampling and control of vectors of infectious diseases is partly limited by the lack of methods for the efficient and sustainable dispensing of attractants. In this study we investigated whether locally-available and commonly used textiles are efficient substrates for the release of synthetic odorant blends attracting malaria mosquitoes. Methods: The relative efficacy of (a) polyester, (b) cotton, (c) cellulose + polyacrylate, and (d) nylon textiles as substrates for dispensing a synthetic odour blend (Ifakara blend 1(IB1)) that attracts malaria mosquitoes was evaluated in western Kenya. The study was conducted through completely randomized Latin square experimental designs under semi-field and field conditions. Results: Traps charged with IB1-impregnated polyester, cotton and cellulose + polyacrylate materials caught significantly more female Anopheles gambiae sensu stricto (semi-field conditions) and An. gambiae sensu lato (field conditions) mosquitoes than IB1-treated nylon (P = 0.001). The IB1-impregnated cellulose + polyacrylate material was the most attractive to female An. funestus mosquitoes compared to all other dispensing textile substrates (P < 0.001). The responses of female An. funestus mosquitoes to IB1-treated cotton and polyester were equal (P = 0.45). Significantly more female Culex mosquitoes were attracted to IB1-treated cotton than to the other treatments (P < 0.001). Whereas IB1-impregnated cotton and cellulose + polyacrylate material attracted equal numbers of female Mansonia mosquitoes (P = 0.44), the catches due to these two substrates were significantly higher than those associated with the other substrates (P < 0.001). Conclusion: The number and species of mosquitoes attracted to a synthetic odour blend is influenced by the type of odour-dispensing material used. Thus, surveillance and intervention programmes for malaria and other mosquito vectors using attractive odour baits should select an odour-release material that optimizes the odour blend

    Demineralization enables reeling of wild Silkmoth cocoons

    Get PDF
    Wild Silkmoth cocoons are difficult or impossible to reel under conditions that work well for cocoons of the Mulberry silkmoth, Bombyx mori. Here we report evidence that this is caused by mineral reinforcement of Wild Silkmoth cocoons and that washing these minerals out allows for the reeling of commercial lengths of good quality fibers with implications for the development of the “Wild Silk” industry. We show that in the Lasiocampid silkmoth Gonometa postica, the mineral is whewellite (calcium oxalate monohydrate). Evidence is presented that its selective removal by ethylenediaminetetraacetic acid (EDTA) leaves the gum substantially intact, preventing collapse and entanglement of the network of fibroin brins, enabling wet reeling. Therefore, this method clearly differs from the standard “degumming” and should be referred to as “demineralizing”. Mechanical testing shows that such preparation results in reeled silks with markedly improved breaking load and extension to break by avoiding the damage produced by the rather harsh degumming, carding, or dry reeling methods currently in use, what may be important for the development of the silk industries not only in Asia but also in Africa and South America

    From spider webs to a fibre-optic chemical sensor

    Get PDF
    From the spider’s perspective, silk is not only a building material but also a safety net, a weapon and a sensory organ to detect the presence of prey on its web. For scientists, dragline silk - directly extracted from spiders - is a tough, biodegradable and biocompatible optical fibre. These protein optical threads are made up of millions of repetitive protein sequences and domains that, unlike its silica counterpart, can interact with a multitude of chemical species. In this communication, we will explore the potential of using spider silk as a new type of fibre-optic chemical sensor

    Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications

    Get PDF
    Tissue engineering (TE) approaches often employ polymer-based scaffolds to provide support with a view to the improved regeneration of damaged tissues. The aim of this research was to develop a surface modification method for introducing chitosan as an antibacterial agent in both electrospun membranes and 3D printed poly-epsilon-caprolactone (PCL) scaffolds. The scaffolds were functionalized by grafting methacrylic acid N-hydroxysuccinimide ester (NHSMA) onto the surface after Ar-plasma/air activation. Subsequently, the newly-introduced NHS groups were used to couple with chitosan of various molecular weights (Mw). High Mw chitosan exhibited a better coverage of the surface as indicated by the higher N% detected by X-ray photoelectron spectroscopy (XPS) and the observations with either scanning electron microscopy (SEM)(for fibers) or Coomassie blue staining (for 3D-printed scaffolds). A lactate dehydrogenase assay (LDH) using L929 fibroblasts demonstrated the cell-adhesion and cell-viability capacity of the modified samples. The antibacterial properties against S. aureus ATCC 6538 and S. epidermidis ET13 revealed a slower bacterial growth rate on the surface of the chitosan modified scaffolds, regardless the chitosan Mw

    Dry-Spun Silk Produces Native-Like Fibroin Solutions

    Get PDF
    Silk's outstanding mechanical properties and energy efficient solidification mechanisms provide inspiration for biomaterial self-assembly as well as offering a diverse platform of materials suitable for many biotechnology applications. Experiments now reveal that the mulberry silkworm Bombyx mori secretes its silk in a practically "unspun" state that retains much of the solvent water and exhibits a surprisingly low degree of molecular order (β-sheet crystallinity) compared to the state found in a fully formed and matured fiber. These new observations challenge the general understanding of silk spinning and in particular the role of the spinning duct for structure development. Building on this discovery we report that silk spun in low humidity appears to arrest a molecular annealing process crucial for β-sheet formation. This, in turn, has significant positive implications, enabling the production of a high fidelity reconstituted silk fibroin with properties akin to the gold standard of unspun native silk

    Electrospinning repellents in polyvinyl alcohol-nanofibres for obtaining mosquito-repelling fabrics

    Get PDF
    Recently, the use of repellents for preventing the transmission of mosquito-borne diseases is getting increasingly more attention. However, most of the current repellents are volatile in nature and must be frequently re-applied as their efficacy is only limited to a short period of time. Therefore, a slow release and abrasion-resistant mechanism is needed for prolonging the protection time of the repellents. The focus of this study is on the direct micro-encapsulation of repellents from an emulsion and integration of already encapsulated repellents into nanofibres via electrospinning. Different repellents were electrospun in polyvinyl alcohol (PVA) nanofibrous structures, namely p-menthane-3,8-diol micro-capsules, permethrin, chilli and catnip oil. The repellents were successfully incorporated in the nanofibres and the tensile properties of the resulting samples did not have a significant change. This means that the newly created textiles were identical to current PVA nanofibrous textiles with the added benefit of being mosquito repellent. Principally, all incorporated repellents in the nanofibrous structures showed a significantly reduced number of mosquito landings compared to the control. Consequently, the currently described method resulted in a new and very effective repelling textile material that can be used in the prevention against mosquito-associated diseases

    From Spider Webs to a Biomimetic Optical Fibre Sensor

    Get PDF
    Can we use spider silk threads as natural, biological optical fibre sensors? In this communication, we will see how we can harness the optical properties of spider dragline silk and use it for sensing
    • …
    corecore